Intro to Android Development
  • Welcome
  • Syllabus
  • Hack Challenge
  • Resources
    • Lecture Videos
    • Ed Discussion
    • Git & GitHub Help/How-To
    • Setting up Android Studio
    • Starting an Android Studio Project & Making an Emulator
    • Importing, Exporting, & Submitting Your Projects to CMS
  • SP25 Course Material
    • Week 1 | Course Logistics, Kotlin, & Basic UI
      • Relevant Links
      • Demo/Lecture: Eatery Card
      • A0: Eatery Card (Follow-Along)
    • Week 2 | States, Components, LazyColumn
      • Relevant Links
      • Demo: Todo List
      • A2: Shopping List
    • Week 3 | Navigation & Animations
      • Relevant Links
      • Demo: Onboarding
      • A3: Stock Trading (RobbingGood)
    • Week 4 | MVVM and Flows
      • Relevant Links
      • Demo: Eatery Card 2
      • A4: Chat of a Lifetime
    • Week 5 | Dumb Components & UIEvents
      • Relevant Links
      • Demo: Music Player
      • A5: Rate My Vibe
    • Week 6 | Coroutines, Networking, JSON
      • Relevant Links
      • Demo: Retrofit
      • A6: You Should Even Lift, Bro.
  • Bonus Week | Android Job Search
    • Relevant Links
    • Android Technical Interview Question!
  • Textbook
    • 1. Introduction to the Editor and Views
      • 1.1 Introduction to the Editor
      • 1.2 SDK Management
      • 1.3 Kotlin Overview
      • 1.4 Views
      • 1.5 Android Studio Project Demo + Understanding The Editor
    • 2. Jetpack Compose
      • 2.1 Introduction
      • 2.2 Layouts
      • 2.3 Modifiers
      • 2.4 Animations
      • 2.5 Lazy Lists
      • 2.6 Reactive UI
    • 3. Intents and Manifest
      • 3.1 Activities
      • 3.2 Implicit Intents
      • 3.3 Explicit Intents
      • 3.4 Manifest
      • 3.5 Permissions
      • 3.6 Summary
    • 4. Navigation
      • 4.1 Types of Navigation
      • 4.2 Implementation of the Bottom Navigation Bar
    • 5. Data and Persistent Storage
      • 5.1 Singleton Classes
      • 5.2 Shared Preferences
      • 5.3 Rooms
      • 5.4 Entities
      • 5.5 Data Access Objects
      • 5.6 Databases
    • 5.5 Concurrency
      • 5.5.1 Coroutines
      • 5.5.2 Implementation of Coroutines
      • 5.5.3 Coroutines with Networking Calls
    • 6. Networking and 3rd Party libraries
      • 6.1 HTTP Overview
      • 6.2 3rd Party Libraries
      • 6.3 JSON and Moshi
      • 6.4 Retrofit
      • 6.5 Summary
    • 7. MVVM Design Pattern
      • 7.1 Key Idea
      • 7.2 Implementation Ideas
    • 8. Flows
    • 9. The Art and Ontology of Software
    • 10. 🔥 Firebase
      • 10.1 Setting up Firebase
      • 10.2 Authentication
      • 10.3 Analytics
      • 10.4 Messaging
      • 10.5 Firestore
  • Additional Topics
    • Git and GitHub
    • Exporting to APK
  • Archive
    • Archived Native Android Textbook Pages
      • 1. Layouts and More Views
        • 1.1 File Structure and File Types
        • 1.2 Resource Files
        • 1.3 Button and Input Control
        • 1.4 ViewGroups
        • 1.5 Summary + A Note On Chapter 2 Topics
      • 2. RecyclerViews
        • 2.1 RecyclerViews
        • 2.2 RecyclerView Performance
        • 2.3 Implementation of a Recycler View
        • 2.4 Implementation with Input Controls
        • 2.5 Filtering RecyclerViews
        • 2.6 Recyclerview Demo
      • 3. ListViews and Searching
        • 3.1 ListView vs. RecyclerView
        • 3.2 ListView Performance
        • 3.3 Implementation of a ListView
        • 3.4 Searching in a List View
      • 4. Fragments
        • 4.1 What are Fragments?
        • 4.2 Lifecycle of a Fragment
        • 4.3 Integrating a Fragment into an Activity
        • 4.4 Sharing Data Between Fragments
        • 4.5 Fragment Slide Shows
      • 5. OkHttp
      • 6. Activity Lifecycle
      • 7. Implementation of Tab Layout
    • Fall 2024 Course Material
      • Lecture 1 & Exercise 1: Introduction to Android
      • Lecture 1.5: Beauty of Kotlin
      • Lecture 2 & HW 2: Modifiers, Lazylists and Reactive UI
      • Lecture 3 & HW 3: Animations, Intents and Manifest
      • Lecture 4 & HW 4: Coroutines & Navigation
      • Lecture 5 & HW 5: Persistent Storage, Networking, and JSON Parsing
      • Lecture 6 & HW 6: MVVM, Flows
      • Bonus Lectures & Bonus HW
      • Bonus Lecture: Industry Practice
    • Spring 2024 Course Material
      • Lecture 1 & Exercise 1: Introduction to Android
      • Lecture 4 & HW 4: LazyLists
      • Lecture 6 & HW 6: Networking, Data, and Persistent Storage
    • Spring 2020 Course Material
      • Week 1: Intro to the Editor
      • Week 2: Views and Layouts
      • Week 3: Intent and Manifest
      • Week 4: ListView and RecyclerView
      • Week 5: Fragments
      • Week 6: Networking
    • Spring 2021 Lecture & HW 8: Networking & 3rd Party APIs
    • HackOurCampus Workshop
Powered by GitBook
On this page
  • Opening Shared Preferences
  • Setting Preferences
  • Reading Preferences

Was this helpful?

  1. Textbook
  2. 5. Data and Persistent Storage

5.2 Shared Preferences

Previous5.1 Singleton ClassesNext5.3 Rooms

Last updated 7 months ago

Was this helpful?

One of the most Interesting Data Storage options Android provides its users is Shared Preferences. Shared Preferences is the way in which one can store and retrieve small amounts of primitive data as key/value pairs to a file on the device storage such as String, int, float, Boolean that make up your preferences in an XML file inside the app on the device storage. It's commonly used for things such as login credentials, favorites, and other in-app settings.

Opening Shared Preferences

You can create a new shared preference file or access an existing one by calling one of these methods:

— Use this if the values you are storing need to be accessed from different activities in the app.

val sharedPreference =  getSharedPreferences("PREFERENCE_NAME", Context.MODE_PRIVATE)
  • Android allows you to have several shared preferences files, and so each must be uniquely identified with a key. In the above example, "PREFERENCE_NAME" is the key. If you only need one Shared Preferences across your app, use this same key everywhere you use getSharedPreferences(...)

  • The second argument defines the access to the preferences file. Context.MODE_PRIVATE means that only your app will be able to access the file, and is most often the desired setting.

— Use this if the values you are storing are only accessed and written from one activity. In this way, things written here tend to be more specific to one part of your app.

val sharedPreference =  getPreferences(Context.MODE_PRIVATE)
  • Unlike getSharedPreferences, you do not need to provide a key for this shared preferences file since it is unique to the activity

Setting Preferences

Each value you store must have an associated key. This key must be unique to the value. The SharedPreferences.Editor() is used to edit values in the SharedPreferences. We can call commit() or apply() to save the values in the SharedPreferences file. The commit() saves the values immediately whereas apply() saves the values asynchronously.

Setting values are quite simple; here is how to set an int:

val sharedPreference =  getSharedPreferences("PREFERENCE_NAME", Context.MODE_PRIVATE)
val editor = sharedPreference.edit()
editor.putInt("KEY", 10)
editor.commit()

Reading Preferences

Getting values is similarly straightforward. To retrieve a value, you must use the same key you used to set it. To retrieve the above value:

val sharedPreference =  getSharedPreferences("PREFERENCE_NAME", Context.MODE_PRIVATE)
sharedPreference.getInt("KEY", 0)

The second argument to getInt is the defaultValue, which is the value that will be returned in the case that nothing has been set for the key provided.

getSharedPreferences()
getPreferences()
Showcases the permitted types on a SharedPreference instance